トップページ > 数学 > 2019年11月28日 > QdpmOFrx

書き込み順位&時間帯一覧

3 位/90 ID中時間01234567891011121314151617181920212223Total
書き込み数40000001200000000000030414



使用した名前一覧書き込んだスレッド一覧
現代数学の系譜 雑談 ◆e.a0E5TtKE
現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
現代数学の系譜 カントル 超限集合論
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79

書き込みレス一覧

現代数学の系譜 カントル 超限集合論
508 :現代数学の系譜 雑談 ◆e.a0E5TtKE []:2019/11/28(木) 00:22:27.05 ID:QdpmOFrx
>>504 追加

https://en.wikipedia.org/wiki/Finite_set
Finite set
(抜粋)

Necessary and sufficient conditions for finiteness
In Zermelo?Fraenkel set theory without the axiom of choice (ZF), the following conditions are all equivalent:[citation needed]

2.(Kazimierz Kuratowski) S has all properties which can be proved by mathematical induction beginning with the empty set and adding one new element at a time. (See below for the set-theoretical formulation of Kuratowski finiteness.)

Set-theoretic definitions of finiteness

Various properties that single out the finite sets among all sets in the theory ZFC turn out logically inequivalent in weaker systems such as ZF or intuitionistic set theories.
Two definitions feature prominently in the literature, one due to Richard Dedekind, the other to Kazimierz Kuratowski. (Kuratowski's is the definition used above.)

つづく
現代数学の系譜 カントル 超限集合論
509 :現代数学の系譜 雑談 ◆e.a0E5TtKE []:2019/11/28(木) 00:24:40.66 ID:QdpmOFrx
>>508

つづき

Kuratowski finiteness is defined as follows. Given any set S, the binary operation of union endows the powerset P(S) with the structure of a semilattice.
Writing K(S) for the sub-semilattice generated by the empty set and the singletons, call set S Kuratowski finite if S itself belongs to K(S).[8] Intuitively,
K(S) consists of the finite subsets of S. Crucially, one does not need induction, recursion or a definition of natural numbers to define generated by since one may obtain K(S) simply by taking the intersection of all sub-semilattices containing the empty set and the singletons.

Readers unfamiliar with semilattices and other notions of abstract algebra may prefer an entirely elementary formulation.
Kuratowski finite means S lies in the set K(S), constructed as follows. Write M for the set of all subsets X of P(S) such that:

X contains the empty set;
For every set T in P(S), if X contains T then X also contains the union of T with any singleton.
Then K(S) may be defined as the intersection of M.

In ZF, Kuratowski finite implies Dedekind finite, but not vice versa.
In the parlance of a popular pedagogical formulation, when the axiom of choice fails badly, one may have an infinite family of socks with no way to choose one sock from more than finitely many of the pairs.
That would make the set of such socks Dedekind finite: there can be no infinite sequence of socks, because such a sequence would allow a choice of one sock for infinitely many pairs by choosing the first sock in the sequence.
However, Kuratowski finiteness would fail for the same set of socks.
現代数学の系譜 カントル 超限集合論
510 :現代数学の系譜 雑談 ◆e.a0E5TtKE []:2019/11/28(木) 00:30:28.71 ID:QdpmOFrx
>>508-509
> 2.(Kazimierz Kuratowski) S has all properties which can be proved by mathematical induction beginning with the empty set and adding one new element at a time. (See below for the set-theoretical formulation of Kuratowski finiteness.)
>Kuratowski finite means S lies in the set K(S), constructed as follows. Write M for the set of all subsets X of P(S) such that:
>X contains the empty set;
>For every set T in P(S), if X contains T then X also contains the union of T with any singleton.
>Then K(S) may be defined as the intersection of M.

なるほど
”Kuratowski finiteness”の定義では、
CやRやQやNのシングルトン
{C}や{R}や{Q}や{N} 達は
有限集合にはならんな!
思った通りだったな!ww(^^;
現代数学の系譜 カントル 超限集合論
511 :現代数学の系譜 雑談 ◆e.a0E5TtKE []:2019/11/28(木) 00:37:22.52 ID:QdpmOFrx
>>509
>Writing K(S) for the sub-semilattice generated by the empty set and the singletons, call set S Kuratowski finite if S itself belongs to K(S).[8] Intuitively,
>K(S) consists of the finite subsets of S. Crucially, one does not need induction, recursion or a definition of natural numbers to define generated by since one may obtain K(S) simply by taking the intersection of all sub-semilattices containing the empty set and the singletons.

もし、singleton が、ZFCの中で正則性公理により有限に留まらざるを得ないならば、話は単純だが
しかし、そうではないからこそ、Kuratowski先生も苦労して、”Kuratowski finiteness”を定義している
かつ、それでこそ、Kuratowskiの論文の値打ちもあろうというものよww(^^;
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79
185 :現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE []:2019/11/28(木) 07:59:47.92 ID:QdpmOFrx
Inter-universal geometry と ABC予想 42
https://rio2016.5ch.net/test/read.cgi/math/1572150086/449-
449 名前:132人目の素数さん[sage] 投稿日:2019/11/26(火) 06:18:49.75 ID:LyHP70fx [1/3]
(抜粋)
ただ、コア的記述による入れ子構造、
(引用終り)

”入れ子構造”は、下記の”お話”だと思うが
普通、”再帰”(下記)というのでは?

http://www.kurims.kyoto-u.ac.jp/~motizuki/research-japanese.html
望月新一 過去と現在の研究
http://www.kurims.kyoto-u.ac.jp/~motizuki/sokkuri-hausu-link-japanese.pdf
IUTeichって何?
「そっくりアニメ」
による解説
(抜粋)
「IUTeich」(=宇宙際 Teichm¨uller 理論)の出発点は、
入れ子になっている宇宙の列
というイメージにある。このようなイメージは、古代に遡るものと思われ、本稿で取
り上げる「そっくりハウス」のアニメをはじめ、世界各地の様々な物語・神話に登場
するものである。IUTeich の場合、それぞれの宇宙は、
「通常の環論・スキーム論が有効な古典的数論幾何的舞台一式」
に対応する。

https://ja.wikipedia.org/wiki/%E5%86%8D%E5%B8%B0
再帰
(抜粋)
再帰(さいき)は、あるものについて記述する際に、記述しているものそれ自身への参照が、その記述中にあらわれることをいう。定義において、再帰があらわれているものを再帰的定義という。自己相似の記事も参照のこと。

主に英語のrecursionとその派生語の訳にあてられる。他にrecurrenceの訳(回帰#物理学及び再帰性を参照のこと)や、reflexiveの訳[1]として「再帰」が使われることがある。数学的帰納法との原理的な共通性から、recursionの訳として数学では「帰納」を使うことがある。

関連項目
数学
数学的帰納法
再帰理論
帰納的集合
帰納的可算集合
帰納言語
帰納的可算言語
帰納的関数
原始再帰関数
漸化式
高階関数

つづく
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79
186 :現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE []:2019/11/28(木) 08:00:10.10 ID:QdpmOFrx
>>185
つづき

https://dic.nicovideo.jp/a/%E5%86%8D%E5%B8%B0
ニコニコ大百科
再帰単語
(抜粋)
再帰とは、 ある対象xの定義の中にxが登場するような物を言う。
→ 再帰

数学における再帰
以下のようなフィボナッチ数列の定義は再帰的な定義と言える。

a1 = a2 = 1
an+2 = an+1 + an
再帰的でない定義(一般解)は以下のような形になる。

an = 1/√5 × [ {(1+√5)/2}n - {(1-√5)/2}n ]
この例から分かるように、再帰的定義を用いると、そうでない定義よりも直感的な定義をすることが可能になる場合がある。

再帰的解法
再帰的な手法を使い、問題を解く手順である。有名なものにハノイの塔がある。

つづく
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79
187 :現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE []:2019/11/28(木) 08:01:03.09 ID:QdpmOFrx
>>186
つづき

なお、関連
http://www.kurims.kyoto-u.ac.jp/~motizuki/Kako%20to%20genzai%20no%20kenkyu.pdf
過去と現在の研究の報告 (2008-03-25 現在) (フォント埋め込み版)

(引用終り)
以上
現代数学の系譜 カントル 超限集合論
519 :現代数学の系譜 雑談 ◆e.a0E5TtKE []:2019/11/28(木) 21:01:57.22 ID:QdpmOFrx
>>501-502 補足
(引用開始)
天才Zermeloが、シングルトンによる自然数の構成を与えた(1908年)
(”The natural numbers are represented by Zermelo as by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these.”)
https://ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0
自然数
例えば、0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
と非常に単純な自然数になる。
(引用終り)

さて
・上記のように、シングルトンは、有限には限らない
 (これは自明だが以下説明する)
・数学では、可算無限を考えることは、頻繁にある
・例えば、下記の時枝記事は”可算無限個ある.箱それぞれに,私が実数を入れる”という記載から始まる
・あるいは、下記の形式的冪級数の各項の係数が、”箱が可算無限個ある”ことに相当するだろう
・また、下記のヒルベルトの無限ホテルのパラドックスでは、”客室が無限にあるホテルを考える”となる
・さて、可算無限個ある箱に、縦棒”|”を入れるとする。”|||・・・”となる
 これを、利用して、・・・|||Φ|||・・・、
 つまりΦを真ん中にして、左右に”|||・・・”を配置する
・ここで、縦棒”|”を左カッコ{ や、右カッコ }に取り替える。即ち
 左の・・・|||→・・・{{{ に
 右の|||・・・→{{{・・・ に 取り替えると
 ・・・{{{Φ}}}・・・となる
 ここで、Φを取り除けば、・・・{{{ }}}・・・
 ここでΦ={ }を替えれば、・・・{{{{ }}}}・・・となる
・ヒルベルトの無限ホテルや形式的冪級数の存在が、否定できない(当然できないよね)
 とすれば、”|||・・・”の存在も否定できない
・従って、・・・{{{ }}}・・・(可算無限多重シングルトン)の存在も否定できない
QED

つづく
現代数学の系譜 カントル 超限集合論
520 :現代数学の系譜 雑談 ◆e.a0E5TtKE []:2019/11/28(木) 21:02:25.19 ID:QdpmOFrx
>>519
つづき

(参考)
ガロア過去スレ20 再録 http://rio2016.2ch.net/test/read.cgi/math/1466279209/2-7
1.時枝問題(数学セミナー201511月号*)の記事)の最初の設定はこうだった。
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.

*)訂正:原文201611月号→201511月号
https://www.nippyo.co.jp/shop/magazine/6987.html
数学セミナー  2015年11月号
箱入り無数目───────────────時枝 正 36

https://ja.wikipedia.org/wiki/%E5%BD%A2%E5%BC%8F%E7%9A%84%E5%86%AA%E7%B4%9A%E6%95%B0
形式的冪級数
(抜粋)
多項式が有限個の項しか持たないのに対し、形式的冪級数は項が有限個でなくてもよい。

https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%81%AE%E7%84%A1%E9%99%90%E3%83%9B%E3%83%86%E3%83%AB%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9
ヒルベルトの無限ホテルのパラドックス
(抜粋)
パラドックスの内容
客室が無限にあるホテルを考える。
(引用終り)
以上
現代数学の系譜 カントル 超限集合論
521 :現代数学の系譜 雑談 ◆e.a0E5TtKE []:2019/11/28(木) 21:05:05.29 ID:QdpmOFrx
>>519 タイポ訂正

 右の|||・・・→{{{・・・ に 取り替えると
  ↓
 右の|||・・・→}}}・・・ に 取り替えると

分かると思うが(^^;
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79
197 :現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE []:2019/11/28(木) 23:10:56.96 ID:QdpmOFrx
>>196
おめでとうございます
凄いですね(^^
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79
198 :現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE []:2019/11/28(木) 23:48:43.22 ID:QdpmOFrx
メモ貼る
https://www.youtube.com/watch?v=Rz5g-plyuAg
Peter Scholze - The geometric Satake equivalence in mixed characteristic
7,685 回視聴?2017/04/13

Institut des Hautes Etudes Scientifiques (IHES)
チャンネル登録者数 2.91万人
Seminaire Paris Pekin Tokyo / MArdi 11 avril 2017

In order to apply V. Lafforgue's ideas to the study of representations of p-adic groups, one needs a version of the geometric Satake equivalence in that setting.
For the affine Grassmannian defined using the Witt vectors, this has been proven by Zhu.
However, one actually needs a version for the affine Grassmannian defined using Fontaine's ring B_dR, and related results on the Beilinson-Drinfeld Grassmannian over a self-product of Spa Q_p.
These objects exist as diamonds, and in particular one can make sense of the fusion product in this situation; this is a priori surprising, as it entails colliding two distinct points of Spec Z.
The focus of the talk will be on the geometry of the fusion product, and an analogue of the technically crucial ULA (Universally Locally Acyclic) condition that works in this non-algebraic setting.
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79
199 :現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE []:2019/11/28(木) 23:52:37.94 ID:QdpmOFrx
>>198
>Satake equivalence

Satakeは、下記だろうね
https://ja.wikipedia.org/wiki/%E4%BD%90%E6%AD%A6%E4%B8%80%E9%83%8E
佐武一郎
(抜粋)
佐武 一郎(さたけ いちろう、1927年 - 2014年10月10日)は、日本の数学者。山口県出身。
カリフォルニア大学バークレー校名誉教授。東北大学名誉教授。理学博士。
専門は微分幾何学、代数群。佐武同型(英語版)(Satake isomorphism)、志村多様体の佐武コンパクト化、ディンキン図形の一般化である佐武図形(英語版)(Satake diagram)などで知られる。
著書の『線型代数学』は線型代数学の入門書として有名であり[1]、現在でも広く読まれている。

略歴
1927年 - 山口県に生まれる
1950年 - 東京大学理学部数学科卒業
1959年 - 東京大学 理学博士 論文の題は「The Gauss-Bonnet theorem for 5-manifolds (5多様体についてのガウス-ボネットの定理) 」[2]。
1962〜63年 - 東京大学教授
1963〜68年 - シカゴ大学教授
1968〜83年 - カリフォルニア大学バークレー校教授
1980〜91年 - 東北大学教授
1991〜98年 - 中央大学理工学部数学科教授
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79
200 :現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE []:2019/11/28(木) 23:58:19.75 ID:QdpmOFrx
>>198
>Satake equivalence

下記かな〜?(^^;

”The geometric Satake equivalence is a geometric version of the Satake isomorphism, proved by Ivan Mirkovi? and Kari Vilonen (2007).”
”which is a fortiori an equivalence of tannakian categories (Ginzburg 2000).”

https://en.wikipedia.org/wiki/Satake_isomorphism
Satake isomorphism
(抜粋)
Jump to navigationJump to search
In mathematics, the Satake isomorphism, introduced by Ichir? Satake (1963), identifies the Hecke algebra of a reductive group over a local field with a ring of invariants of the Weyl group.
The geometric Satake equivalence is a geometric version of the Satake isomorphism, proved by Ivan Mirkovi? and Kari Vilonen (2007).

Statement
Classical Satake isomorphism Let {\displaystyle G}G be a semisimple algebraic group, {\displaystyle K}K be a non-Archimedean local field and {\displaystyle O}O be its ring of integers. It's easy to see that {\displaystyle Gr=G(K)/G(O)}{\displaystyle Gr=G(K)/G(O)} is grassmannian.

Then, the geometric Satake isomorphism is

{\displaystyle K(Perv(Gr))\otimes _{\mathbb {Z} }\mathbb {C} \quad {\xrightarrow {\sim }}\quad K(Rep({}^{L}G))\otimes _{\mathbb {Z} }\mathbb {C} }{\displaystyle K(Perv(Gr))\otimes _{\mathbb {Z} }\mathbb {C} \quad {\xrightarrow {\sim }}\quad K(Rep({}^{L}G))\otimes _{\mathbb {Z} }\mathbb {C} },

which can be obviously simplified to

{\displaystyle Perv(Gr)\quad {\xrightarrow {\sim }}\quad Rep({}^{L}G)}{\displaystyle Perv(Gr)\quad {\xrightarrow {\sim }}\quad Rep({}^{L}G)},

which is a fortiori an equivalence of tannakian categories (Ginzburg 2000).


※このページは、『2ちゃんねる』の書き込みを基に自動生成したものです。オリジナルはリンク先の2ちゃんねるの書き込みです。
※このサイトでオリジナルの書き込みについては対応できません。
※何か問題のある場合はメールをしてください。対応します。