トップページ > 数学 > 2018年07月12日 > 0iQVYdHR

書き込み順位&時間帯一覧

30 位/90 ID中時間01234567891011121314151617181920212223Total
書き込み数0000000000000010000000001



使用した名前一覧書き込んだスレッド一覧
132人目の素数さん
数学を初めとした理系の学問と哲学について 

書き込みレス一覧

数学を初めとした理系の学問と哲学について 
224 :132人目の素数さん[]:2018/07/12(木) 14:29:18.37 ID:0iQVYdHR
数学が実在的か否かはともかく、とりあえず数学は人々に客観的なものであると
認知されている。それに対し、カントやニーチェの哲学では客観性=真理性
そのものの存在に対して否と言う。カントであれば、真の客観性や真理性は、
ブラックボックスとして「もの自体」という未知の領域Xにあるものと措定されるし、
ニーチェであれば、真理のすべてはパースペクティヴや解釈の違いによる現れの違いに
過ぎず、真理だと呼べるものは、この世界や宇宙には何一つ存在しないと述べている。

古典論理やライプニッツ、デカルトの近代数学の完全性などは、その真理の保証人
として、暗黙裡に神を前提としているのだろうけど、ニーチェの場合は「神は死んだ」と
なるので、そういう真理性の保証人となるような絶対真理みたいなものはない、と
いう立場になる。すべての真理はその主体との相関項で現れる相対的な暫定的なもの
(暫定・相対的な真理。だからその観点だと、数学も真の客観性を表すものでなく、
相対的で道具的、あるいは、有用・有効性の中において捉えられるものだという
解釈になる。

複雑な現代数学などは、むしろ、この相対的な真理性の方に入ってくるのではないかな
と感じているのだけど、違うのか。ゲーデルの不完全性定理もこっちに入りそうだけど。


※このページは、『2ちゃんねる』の書き込みを基に自動生成したものです。オリジナルはリンク先の2ちゃんねるの書き込みです。
※このサイトでオリジナルの書き込みについては対応できません。
※何か問題のある場合はメールをしてください。対応します。