トップページ > 数学 > 2018年02月20日 > HFA3crJ2

書き込み順位&時間帯一覧

2 位/64 ID中時間01234567891011121314151617181920212223Total
書き込み数2000000000001000200000005



使用した名前一覧書き込んだスレッド一覧
132人目の素数さん
奇数の完全数の有無について [無断転載禁止]©2ch.net

書き込みレス一覧

奇数の完全数の有無について [無断転載禁止]©2ch.net
118 :132人目の素数さん[sage]:2018/02/20(火) 00:35:51.68 ID:HFA3crJ2
>>117
計算間違いを直しました。

>>116 訂正
p=k/gの場合、
h+k=h+gp=h+g(p-1)+g
c≡h+k≡g+h (mod p-1)
gとhの偶奇は一致するから、cが奇数であることに反するので
この場合は不適になる。


2b-c(p^(n+1)-1)/(p-1)=0
(p^n+…+1)/2が奇数であるから、mを整数としてn=4m+1が必要となる。
2b(p-1)=c(p^(n+1)-1)
2b(p-1)=c(p^(4m+2)-1)
2b=c(p^(4m+1)+p^(4m)+…+1)
2b=c(p+1)(p^(4m)+p^(4m-2)+…+1)
2b=c(p+1)((p^2+1)(p^(4m-2)+p^(4m-6)+…+p^2)+1)
bはp+1が4の倍数でないときに奇数となる。


a-c=(g-k)(p-1)より、
g-k=(kp+h)(p^(n-1)+…+1)
g=c(p^(n-1)+…+1)+k
g≡(h+k)(p^(n-1)+…+1)+k (mod p-1)

p^(n-1)+…+1=(p^(n-1)-1)+1+(p^(n-2)-1)+1…+(p-1)+1+1)から
p^(n-1)+…+1≡n (mod p-1)となるので
g≡n(h+k)+k (mod p-1)
∴g-k≡n(h+k)

2b-c≡g-k≡n(h+k)≡nc (mod p-1)
(n+1)c≡2b (mod p-1)
(4m+2)c≡2b (mod p-1)

整数をrとして、p-1=4qとすると、
(4m+2)c-2b=4qr
(2m+1)c-b=2qr

1. rが奇数のとき
(2m+1)c-b≡2qr (mod p-1)
b≡g+h (mod p-1)より、
g+h≡(2m+1)(h+k)-2qr (mod p-1)
g≡2(mh-qr)+(2m+1)k (mod p-1)

2. rが偶数のとき
(2m+1)c-b≡0 (mod p-1)
b≡(2m+1)c
b≡g+h (mod p-1)より、
g+h≡(2m+1)(h+k) (mod p-1)
g≡2mh+(2m+1)k (mod p-1)

1.、2.の両方の場合で、gとkの偶奇が一致するが、
これは(1)、(2)の条件と矛盾する。

以上から、奇数の完全数は存在しない。
奇数の完全数の有無について [無断転載禁止]©2ch.net
119 :132人目の素数さん[sage]:2018/02/20(火) 00:37:29.27 ID:HFA3crJ2
>>118 訂正
>g≡2(mh-qr)+(2m+1)k (mod p-1)
g≡2(mh-qr)h+(2m+1)k (mod p-1)
奇数の完全数の有無について [無断転載禁止]©2ch.net
121 :132人目の素数さん[sage]:2018/02/20(火) 12:52:50.05 ID:HFA3crJ2
>>120
また、計算間違いを直しました。

>>118 訂正
p=k/gの場合、
h+k=h+gp=h+g(p-1)+g
c≡h+k≡g+h (mod p-1)
gとhの偶奇は一致するから、cが奇数であることに反するので
この場合は不適になる。


2b-c(p^(n+1)-1)/(p-1)=0
(p^n+…+1)/2が奇数であるから、mを整数としてn=4m+1が必要となる。
2b(p-1)=c(p^(n+1)-1)
2b(p-1)=c(p^(4m+2)-1)
2b=c(p^(4m+1)+p^(4m)+…+1)
2b=c(p+1)(p^(4m)+p^(4m-2)+…+1)
2b=c(p+1)((p^2+1)(p^(4m-2)+p^(4m-6)+…+p^2)+1)
bはp+1が4の倍数でないときに奇数となり、
p-1が4の倍数であることが必要になる。

Cのpに関する2次方程式が、p=4q+1とk/gの2解を持つとすると
以下の式が成立しなければならない。
g(p-4q+1)(p-k/g)-gp^2+(-a-g+h)p+c-h=0
(-4gq+g-k)p+4kq-k-((-a-g+h)p+c-h)=0
(a-4gq+2g-k-h)p+4kq-k-c+h=0
ap-c+(-4gq+2g-k)p+4kq-k-h(p-1)=0

ap-c=2b(p-1)から
ap-c≡0 (mod p-1)を用いると
-4gq+2g-2k+4kq≡0 (mod p-1)

rを整数として、
-4gq+2g-2k+4kq=r(p-1)
-2gq+g-k+2kq=r(p-1)/2
p-1は4の倍数となるから、(p-1)/2が偶数となるから
右辺は偶数になり、gとkの偶奇は一致することになる。
しかしこれは、(1)、(2)に矛盾する。

以上から、奇数の完全数は存在しない。
奇数の完全数の有無について [無断転載禁止]©2ch.net
124 :132人目の素数さん[sage]:2018/02/20(火) 16:02:43.64 ID:HFA3crJ2
>>123
訂正します。

>g(p-4q+1)(p-k/g)-gp^2+(-a-g+h)p+c-h=0
g(p-4q+1)(p-k/g)-(gp^2+(-a-g+h)p+c-h)=0
奇数の完全数の有無について [無断転載禁止]©2ch.net
125 :132人目の素数さん[sage]:2018/02/20(火) 16:22:38.54 ID:HFA3crJ2
>>121 訂正
p=k/gの場合、
h+k=h+gp=h+g(p-1)+g
c≡h+k≡g+h (mod p-1)
gとhの偶奇は一致するから、cが奇数であることに反するので
この場合は不適になる。


2b-c(p^(n+1)-1)/(p-1)=0
(p^n+…+1)/2が奇数であるから、mを整数としてn=4m+1が必要となる。
2b(p-1)=c(p^(n+1)-1)
2b(p-1)=c(p^(4m+2)-1)
2b=c(p^(4m+1)+p^(4m)+…+1)
2b=c(p+1)(p^(4m)+p^(4m-2)+…+1)
2b=c(p+1)((p^2+1)(p^(4m-2)+p^(4m-6)+…+p^2)+1)
bはp+1が4の倍数でないときに奇数となり、
p-1が4の倍数であることが必要になる。

Cのpに関する2次方程式が、p=4q+1とk/gの2解を持つとすると
gp^2-4gqp+gp-kp+4kq-k-(gp^2+(-a-g+h)p+c-h)=0
-4gqp+gp-kp+4kq-k-((-a-g+h)p+c-h)=0
(-4gq+2g-k+a-h)p+4kq-c-k+h=0
ap-c+2gp-4gqp+4kq-(p+1)k-h(p-1)=0

ap-c=2b(p-1)から
ap-c≡0 (mod p-1)を用いると
-4gq+2g-2k+4kq≡0 (mod p-1)

rを整数として、
-4gq+2g-2k+4kq=r(p-1)
-2gq+g-k+2kq=r(p-1)/2
p-1は4の倍数であり、(p-1)/2が偶数となるから
右辺は偶数になり、gとkの偶奇は一致することになる。
しかしこれは、(1)、(2)に矛盾する。

以上から、奇数の完全数は存在しない。


※このページは、『2ちゃんねる』の書き込みを基に自動生成したものです。オリジナルはリンク先の2ちゃんねるの書き込みです。
※このサイトでオリジナルの書き込みについては対応できません。
※何か問題のある場合はメールをしてください。対応します。